Ideal extensions and directly infinite algebras
نویسندگان
چکیده
Directly infinite algebras, those E which have a pair of elements x and y where 1=xy≠yx, are well known to sub-algebra isomorphic M∞(K), the set Z+×Z+-indexed matrices only finitely many nonzero entries. When this is actually an ideal, we may analyze algebra in terms extension some A by that is, short exact sequence K-algebras 0→M∞(K)→E→A→0. The present article characterizes all trivial (split) extensions K[x,x−1] M∞(K) examining as sub-algebras matrix algebras. Furthermore, construct family pairwise non-isomorphic {Ti:i≥0}, can be written 0→M∞(K)→Ti→K[x,x−1]→0.
منابع مشابه
Purely Infinite Corona Algebras and Extensions
We classify all essential extensions of the form 0 → B → D → C(X) → 0 where B is a nonunital simple separable finite real rank zero Z-stable C*algebra with continuous scale, and where X is a finite CW complex. In fact, we prove that there is a group isomorphism Ext(C(X),B) → KK(C(X),M(B)/B).
متن کاملIDEAL J *-ALGEBRAS
A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...
متن کاملA Classification Theorem for Direct Limits of Extensions of Circle Algebras by Purely Infinite C*-algebras
We give a classification theorem for a class of C*-algebras which are direct limits of finite direct sums of E0-algebras. The invariant consists of the following: (1) the set of Murray-von Neumann equivalence classes of projections; (2) the set of homotopy classes of hyponormal partial isometries; (3) a map d; and (4) total K-theory.
متن کاملIdeal Amenability of Banach Algebras and Some Hereditary Properties
Let A be a Banach algebra. A is called ideally amenable if for every closed ideal I of A, the first cohomology group of A with coefficients in I* is trivial. We investigate the closed ideals I for which H1 (A,I* )={0}, whenever A is weakly amenable or a biflat Banach algebra. Also we give some hereditary properties of ideal amenability.
متن کاملOn Infinite Unramified Extensions
Let k be a number field. A natural question is: Does k admit an infinite unramified extension? The answer is no, if the root discriminant of k is less than Odlyzko’s bounds. The answer is yes, if k fails the test of Golod-Shafarevic for a prime number p. In that case, we know that there exists an infinite unramified p-extension L over k. But generally it is fairly difficult to determin whether ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2022
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2021.106982